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5. NATURAL NUMBERS 
 

§5.1. The Peano Axioms 
We begin by defining the natural numbers: 

0, 1, 2, 3, 4, ... 

If you can think back far enough 

to when you first learnt to count 

you won’t remember ever having 

been given a formal definition of 

number. Moreover many of the 

basic properties of these numbers 

will have been ‘proved’ by 

assertion, or at best by observing 

them in a few examples. 

 

It’s possible to set up axioms for the natural 

numbers independently of the axioms of set theory, using 

the so-called Peano Axioms, but here we’re taking the 

view that every object in mathematics is a set, so we’ll 

define the set of natural numbers using set-theoretical 

constructions, and then we’ll define a natural number to 

be any element of that set. We’ll then be able to prove the 

Peano axioms rather than assume them. 

 

DEFINITION OF NATURAL NUMBERS 

0 = , the empty set; 

1 = 0+ = 0  {0} = {0}, 

2 = 1+ = 1  {1} = {0}  {1} = {0, 1}, 
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3 = 2+ = 2  {2} = {0, 1}  {2} = {0, 1, 2}, 

…………………………………………….. 

n = {0, 1, 2, …, n − 1}. 

…………………………………………….. 

 

NOTE: 

(1) Every one of the above can be justified as being a set 

by the ZF axioms. 

(2) The natural number n is defined as a set with n 

elements. 

(3) Each of these is a complicated construction using just 

the empty set as building blocks. 

So, for example, 3 = {, {}, {, {}}}. 

 

Thank goodness we don’t have to write the date in terms 

of the empty set! 

 

 But can we be sure that n+ is always a set? Just 

because we write something to look like a set doesn’t 

mean that it is a set. After all {x | x  x} looks like it 

should be a set, but it isn’t. Let’s settle this question now. 

 

Theorem 1: If S is a set then so is S+. 

Proof: Suppose  S  is a set. 

Then {S} = {S, S} is a set by the Axiom of Pairing. 

Hence {S, {S}} is a set, also by the Axiom of Pairing. 

Hence {S, {S}} = S  {S} is a set by the Axiom of 

Unions. ☺ 
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Now we defined 

S* = {x | (S  x)  (y  x → y+  x)}. 

But is it a set? We will prove later that if S is a set then S* 

is a set. We only need 0* to be a set and this is what the 

Axiom of Infinity asserts. We write 0* as ℕ and we call it 

the set of natural numbers. So ℕ = {0, 1, 2, ... } and it is 

a set. 

 

Now we prove the Peano axioms. Of course this means 

that they are no longer axioms. 

 

Theorem 2 (Peano Axioms): 

(P1) 0  ℕ. 

(P2) n[n  ℕ → n+  ℕ]. 

(P3) n[n+  0]. 

(P4) mn[m+ = n+ → m = n]. 

(P5) If S  ℕ and 0  S and n+  S for all n  S, 

                                                                     then S = ℕ. 

Proof: (P1) and (P2) follow from the fact that ℕ = 0*. 

(P3) Let n  ℕ and suppose n+ = 0.  Then n  {n} = 0, 

and so n  0, a contradiction. 

(P4) We shall postpone the proof of (P4). 

(P5) Suppose that S  ℕ, 0  S and n  S implies that 

n+  S. 

Let T = {x | 0  x  y[y  x → n+  x]}. 

Then S  T and so ℕ = T  S.  Hence S = ℕ. ☺ 

NOTE: (P5) is the foundation for the Principal of 

Induction. 
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 When we have defined addition we’ll see that: 

n+ = n + 1, 

and so these five ‘axioms’ will look more familiar if we 

write them in such terms: 

 

(P1) 0 is a natural number. 

(P2) For all n, n + 1 is a natural number. 

(P3) n + 1 is never zero. 

(P4) If m + 1 = n + 1 then m = n. 

(P5) If 0  S   ℕ, and n + 1  S whenever n  S, 

then S = ℕ. 

 

 If you say that these are obvious, you’re relying too 

much on your intuition. Of course that’s not such a bad 

thing, but in keeping with the spirit of Axiomatic Set 

Theory, everything has to either be assumed as an axiom, 

or proved from the axioms. Just to say “it’s obvious” is 

not good enough. Even to say, as a proof of (P4) “just 

subtract 1 from both sides” requires subtraction to be 

defined. 

 

Theorem 3 (Principle of Induction): 

If P is a predicate and both P0 and n ℕ[Pn → Pn+]. 

Then n ℕ[Pn]. 

Proof: Suppose P0  n ℕ[Pn → Pn+]. 

Let S = {n  ℕ | Pn}. Then 0  S and 

n ℕ[Pn → Pn+] 

By (P5) S = ℕ, that is n ℕ[Pn]. ☺ 
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 Sets that are elements of themselves seem counter-

intuitive yet nothing in the ZF axioms rules out the 

possibility of x  x occurring. Indeed, as we’ll see later, it 

is possible to have a ZF model in which this can occur. 

But if x  x then x+ = x  {x} = x. This had better not 

happen with any natural number because, if so, our 

counting would get stuck at some point. 

For example, suppose that 0  0 (pretty obvious 

since the empty set has no elements) and suppose that 

1  1and 2  2 and 3  3 but 4  4. Then we’d have to 

count as follows:  0, 1, 2, 3, 4, 4, 4, 4, ….. 

 

There’s a story (though anthropologists deny that 

it’s true) that a certain tribe of aborigines counted 1, 2, 3, 

many. This is what the above situation would lead to. We 

had better show that n+ is never the same as n, or in other 

words that n  n for any natural number n. 

 

Theorem 4: No natural number is a subset of any of its 

elements. 

Proof: Let S be the set of natural numbers that are not a 

subset of any of their elements. Clearly 0  S. 

Suppose n  S. Suppose n+  m  n+. 

If m  n,  n  n+  m  n, a contradiction. 

If m = n then n+  n so n  n and hence n  n  n, a 

contradiction. ☺ 

Corollary: No natural number is an element of itself. 
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 So, x  x can’t happen for natural numbers. But 

what’s to stop it happening for other sets? The answer is 

“nothing”. It all depends on what flavour of Set Theory 

you want to build! 

 

We define a set to be transitive if S  S. Clearly 

0 is transitive, since 0 = 0. Since 1 = {0}, 1 = 0 and so 

1 is transitive. Since 2 = 1+ = {0}  {1} = {0, 1}, 

2 = {0} = 1 = {0}  2. Hence 2 is transitive.  

 

Theorem 5: All natural numbers are transitive. 

Proof: 0 is transitive since 0 = 0. 

Suppose  n  is transitive. 

Then n  n. Now n+ = n  {n} so 

                             n+ = n  n  n  n+. 

Hence n+ is transitive. By induction all natural numbers 

are transitive. ☺ 

 

Theorem 6 (P4): If m+ = n+ then m = n. 

Proof: If m+ = n+ and m  n then m  n and n  m and so 

m  m  m, whence m  m, contradicting the Corollary 

to Theorem 4. Hence m = n. ☺ 

 

§5.2. The Ordering of the Natural 

Numbers 
To construct a working model of the natural 

numbers within set theory we need to define the 

arithmetic operations. But before we do that we’ll define 
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the ordering of the natural numbers. We define m < n to 

simply mean that m  n. This is consistent with the 

ordering we’ve grown up with. For example 2 < 4 because 

4 = {0, 1, 2, 3} and so 2  4. We must now show that this 

ordering has the familiar properties. 

 

Theorem 7 (Transitive Law): 

If m < n and n < r then m < r. 

Proof: Suppose m  n and n  r. Then m  r  r and 

so m  r. ☺ 

 

 What is a little harder to show is that any two 

natural numbers are comparable.  That is, given any two 

natural numbers m, n either m = n or m < n or m > n (by 

which we mean that n < m). According to our definition 

of ‘less than’ this means that given any two natural 

numbers m, n either m = n or m  n or n  m. 

This property doesn’t hold for sets in general. For 

example if S = {1, 2} and T = {2, 3} none of the 

relationships S = T, S  T and T  S hold. 

  

We say that natural numbers m, n are comparable 

if m  n, m = n or n  m. Comparability is clearly an 

equivalence relation. 

 

Theorem 8: Any two natural numbers are comparable. 

Proof: Let C(n) = {m  ℕ | m is comparable with n}. 

C(0) = ℕ: Just use induction on the set {n  ℕ | n  C(0)}. 

Clearly 0  C(0). 
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Suppose n  C(0). Then n  0 or n = 0 or 0  n. 

The first of these alternatives is a contradiction. 

Each of the remaining two possibilities implies that 

0  n+ so n+  C(0). 

 

If C(n) = ℕ then C(n+) = ℕ: 

Suppose C(ℕ) = ℕ. We show by induction that for all 

natural numbers m, m  C(n+). 

0  C(n+) since n+  C(0). Suppose m  C(n+). 

Then m  n+ or   m = n+   or   n+  m. 

Case 1 m  n+: Then m = n or m  n. 

Case 1A m = n: Then m+ = n+. 

Case 1B m  n: 

Since C(n) = ℕ, m+ is comparable with n. 

Case 1B(i) n  m+: 

Then n  m or n = m, both contradicting m  n. 

Case 1B(ii) n = m+ or m+  n: Then m+  n+. 

Case 2 m = n+ or n+  m:  Then n+  m+. 

Hence m+ is comparable with n+ and so C(n+) = ℕ. 

By induction C(n) = ℕ for all natural numbers n. ☺ 

 

Theorem 9: m  n if and only if m  n. 

Proof: Suppose m  n. 

If x  m then x  n  n. Hence m  n. 

But m  n by the corollary to Theorem 4. Hence m  n. 

 

Conversely suppose that m  n. 
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By Theorem 6, m  n or n  m (m = n is ruled out by the 

fact that m is a proper subset).  If n  m then n  n, 

contradicting the corollary to Theorem 3. Hence m  n. 
☺ 

 

Theorem 10: S* is a set for all sets S. 

Proof: I’ll just give an outline of the proof. The details of 

the two inductions are left as exercises. 

(1) We prove by induction on n that there exists a function 

Fn with domain n+ such that for all m  n, Fn(m+) = Fn(m)+ 

and Fn(0) = S. 

(2) We prove by induction on  n  that if m < n then for all 

x  m, Fm(x) = Fn(x). 

(3) Define the generalized relation F by xFy  y = Fn(x) 

for some n. 

(4) By (2) F is a generalized function. 

(5) ℕ is a set so, by the Axiom of Substitution, S* = F[ℕ] 

is a set. ☺ 

 

§5.3. The Arithmetic of the Natural 

Numbers 
 It’s heavy going proving rigorously what seems so 

obvious intuitively. We haven’t even got to the stage of 

proving that 2 + 2 = 4. We now define addition of natural 

numbers. If you think this is unnecessarily complicated, 

ask yourself how you would go about defining addition, 

without resorting to such vague notions of taking heaps of 

things and combining them. 
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 We shall define addition inductively. The next 

theorem justifies this approach. 

 

Theorem 11 (Definition by Induction): If X is a set and 

a  X and F:X→X is a function then there exists a unique 

function u: ℕ →X such that: 

(1) u(0) = a; 

(2) u(n+) = F(u(n)) for all n  ℕ. 

Proof: Let C = {A  ℕ  X | (0, a)  A  (n+, F(x))  A 

whenever (n, x)  A}. 

Since   X  C, C  0. Let U = C. 

Then U  C and so U is the smallest element of C. 

We prove that U is a function. 

Let S = {n  ℕ | (n, x)  U and (n, y) implies that x = y}. 

0  S: If not then (0, b)  U for some b  a. 

Then u − {(0, b)}  S, contradicting the fact that U is the 

smallest element of C. 

n  S → n+  S: Suppose n  S and n+  S. 

Since n  S there exists a unique x with (n, x)  U. 

Hence (n+, F(x))  U. 

Since n+  S there exists y such that (n+, y)  U for some 

y  F(x). 

Then U − {(n+, y)}  U, contradicting the fact that U is 

the smallest element of C. 

Uniqueness follows from the fact that U is the smallest 

element of C. ☺ 

 We now define the basic arithmetic operations for 

the natural numbers inductively. 
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Addition 

(A0) x + 0 = x 

(A1) x + y+ = (x + y)+ 

 

Multiplication 

(M0) x0 = 0 

(M1) xy+ = xy + x 

 

Exponentiation 

(E0) x0 = 1 

(E1) xy
+
 = xy x 

 

Theorem 12:  0 + x = x for all natural numbers x. 

Proof: We prove this by induction on x. 

0 + 0 = 0 by (A0). 

Suppose that 0 + x = x. 

Then 0 + x+ = (0 + x)+ by (A1) 

                    = x+ by the induction hypothesis. ☺ 

 

Theorem 13: x + y+ = x+ + y for all natural numbers x, y. 

Proof: Induction on y. 

x + 0+ = (x + 0)+ by (A1) 

          = x+ by (A0) 

          = x+ + 0 by (A0). 

Suppose that x + y+ = x+ + y. 

Then x + y++ = (x + y+)+ by (A1) 

                     = (x+ + y)+ by the induction hypothesis 

                     = x+ + y+ by (A1). ☺ 
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Theorem 14: x + y = y + x for all natural numbers x, y. 

Proof: Induction on  y. 

x + 0 = 0 by (A0) 

         = 0 + x by Theorem 10. 

Suppose that x + y = y + x. 

Then x + y+ = (x + y)+ by (A1) 

                    = (y + x)+ by the induction hypothesis 

                    = y + x+ by (A1) 

                    = y+ + x by Theorem 11. ☺ 

 

Theorem 15: If x + u = x + v then u = v. 

Proof: We prove this by induction on x. 

Suppose x = 0.  The result follows from Theorem 12. 

Now suppose that it is true for x and suppose that 

x+ + u = x+ + v. 

Then x + u+ = x + v+ by Theorem 13. 

Hence u+ = v+ by the induction hypothesis. 

Finally, this implies that u = v by the Peano Axiom 4 

(Theorem 6). Hence it’s true for x+ and so, by induction, 

it is true for all x. ☺ 

 

Theorem 16: If x  y then there is a unique z such that 

x + z = y. 

Proof: The uniqueness was proved in Theorem 15. 

We now prove the existence of z by induction on y. 

If y = 0 then 0 + 0 = 0 proves that it is true in this case. 

Suppose it is true for y and suppose that x  y+. 

Thus x  y+ = y  {y}. 

Hence x = y or x  y. 
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Case 1: x = y.  Then take z = 1. 

x + 1 = x+ = y+ and so it is true for y+. 

Case 2: x  y.  This is the same as x  y and by our 

induction hypothesis there exists z such that x + z = y. 

Then x + z+ = (x + z)+ = y+ and so it is true for y+. 

So, by induction it is true for all y. ☺ 

 

 We define the unique z as the difference between x 

and y and denote it by y − x.  We call the process 

subtraction. 

 

Theorem 17: For all natural numbers x, y, z the following 

hold: 

• (x + y) + z = x + (y + z). 

• x(y + z) = xy + xz. 

• 0x = 0 

• y+x = yx + x 

• xy = yx 

• 1x = x 

• (xy)z = xz yz 

• xy xz = xy+z 

• (xy)z = xyz 

• If x + y = 0 then x = y = 0  

• If xy = 0 then x = 0 or y = 0 

• x  y if and only if y = x + z for some z. 

• 0  x. 

• If xz = yz and z  0 then x = y. 

• If x  y then x + z  y + z and xz  yz. 
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• If x  y and y  z then x  z. 

• If x  y and y  x then x = y. 

Proof: The proofs are left as exercises. They are all 

proved by induction, and the list is carefully ordered so 

that results that are needed in any induction precede it in 

the list.  

 

 There’s a lot more that can be proved about the 

arithmetic of natural numbers, but it’s all pretty well plain 

sailing now, so we’ll now turn our attention to extending 

our number system to rational numbers, real numbers and 

complex numbers. 

 


