5. NATURAL NUMBERS
85.1. The Peano Axioms

We begin by defining the natural numbers:
0,1,23,4,..

If you can think back far enough
to when you first learnt to count
you won’t remember ever having
been given a formal definition of
number. Moreover many of the
basic properties of these numbers
will have been ‘proved’ by
assertion, or at best by observing
them in a few examples.

It’s possible to set up axioms for the natural
numbers independently of the axioms of set theory, using
the so-called Peano Axioms, but here we’re taking the
view that every object in mathematics is a set, so we’ll
define the set of natural numbers using set-theoretical
constructions, and then we’ll define a natural number to
be any element of that set. We’ll then be able to prove the
Peano axioms rather than assume them.

DEFINITION OF NATURAL NUMBERS
0 = &, the empty set;
1=0"=0wu {0} = {0},
2=1"=1u {1} ={0}y U {1} ={0, 1},
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3=2"=20u{2}=1{0, 1} U {2} = {0, 1, 2},

NOTE:

(1) Every one of the above can be justified as being a set
by the ZF axioms.

(2) The natural number n is defined as a set with n
elements.

(3) Each of these is a complicated construction using just
the empty set as building blocks.

So, for example, 3 = {J, {J}, {D, {T}}}.

Thank goodness we don’t have to write the date in terms
of the empty set!

But can we be sure that n* is always a set? Just
because we write something to look like a set doesn’t
mean that it is a set. After all {x | x ¢ x} looks like it
should be a set, but it isn’t. Let’s settle this question now.

Theorem 1: If Sis aset thenso is S*.

Proof: Suppose S is a set.

Then {S} = {S, S} is a set by the Axiom of Pairing.
Hence {S, {S}} is a set, also by the Axiom of Pairing.
Hence U{S, {S}} = S U {S} is a set by the Axiom of
Unions. %©
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Now we defined
S =n{x|(Sex)A(y e x>y ex)}
But is it a set? We will prove later that if S is a set then S*
Is a set. We only need 0* to be a set and this is what the
Axiom of Infinity asserts. We write 0* as N and we call it
the set of natural numbers. SoN ={0, 1, 2, ... }and it is
a set.

Now we prove the Peano axioms. Of course this means
that they are no longer axioms.

Theorem 2 (Peano Axioms):
(P1) 0 e N.
(P2) Vn[n e N > n* € N].
(P3) Vn[n* = 0].
(P4) VmVn[m* =n* —> m =n].
(P5)IfScNand0O e Sandn*e Sforalln € S,

then S = N.
Proof: (P1) and (P2) follow from the fact that N = 0",
(P3) Let n € N and suppose n* =0. Thenn v {n} =0,
and so n € 0, a contradiction.
(P4) We shall postpone the proof of (P4).
(P5) Suppose that S N, 0 € Sand n € S implies that

n*eS.

Let T={x|0 e xAVy[ly e x—>n"ex]}.
ThenS e TandsoN=nT cS. HenceS=N. %©
NOTE: (P5) is the foundation for the Principal of
Induction.
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When we have defined addition we’ll see that:
nf=n+1,
and so these five ‘axioms’ will look more familiar if we
write them in such terms:

(P1) 0 is a natural number.

(P2) For all n, n + 1 is a natural number.

(P3) n + 1 is never zero.

(P4) Ifm+1=n+1thenm=n.

(P5) If0eS cN,andn+1 e Swhenevern € S,
then S =N.

If you say that these are obvious, you’re relying too
much on your intuition. Of course that’s not such a bad
thing, but in keeping with the spirit of Axiomatic Set
Theory, everything has to either be assumed as an axiom,
or proved from the axioms. Just to say “it’s obvious” is
not good enough. Even to say, as a proof of (P4) “just
subtract 1 from both sides” requires subtraction to be
defined.

Theorem 3 (Principle of Induction):
If P is a predicate and both PO and Vne N[Pn — Pn™].
Then Vne N[Pn].
Proof: Suppose PO A Vne N[Pn — Pn™].
LetS={n e N|Pn}. Then0 € Sand
Vne N[Pn — Pn"]
By (P5) S = N, that is Vne N[Pn]. %©
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Sets that are elements of themselves seem counter-
intuitive yet nothing in the ZF axioms rules out the
possibility of x € x occurring. Indeed, as we’ll see later, it
Is possible to have a ZF model in which this can occur.
But if x € x then x* = x U {Xx} = x. This had better not
happen with any natural number because, if so, our
counting would get stuck at some point.

For example, suppose that 0 ¢ O (pretty obvious
since the empty set has no elements) and suppose that
1¢land2 ¢ 2and 3 ¢ 3 but4 € 4. Then we’d have to
count as follows: 0,1,2,3,4,4,4,4, .....

There’s a story (though anthropologists deny that
it’s true) that a certain tribe of aborigines counted 1, 2, 3,
many. This is what the above situation would lead to. We
had better show that n* is never the same as n, or in other
words that n ¢ n for any natural number n.

Theorem 4: No natural number is a subset of any of its
elements.

Proof: Let S be the set of natural numbers that are not a
subset of any of their elements. Clearly 0 € S.

Suppose n € S. Suppose N < m € n*,

Ifmen, ncn®<m e n, acontradiction.
Ifm=nthenn"ensonenandhencencnen,a
contradiction. %©

Corollary: No natural number is an element of itself.
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S0, X € X can’t happen for natural numbers. But
what’s to stop it happening for other sets? The answer is
“nothing”. It all depends on what flavour of Set Theory
you want to build!

We define a set to be transitive if US c S. Clearly
0 is transitive, since W0 = 0. Since 1 = {0}, w1 =0and so
1 is transitive. Since 2 = 1" = {0} u {1} = {0, 1},
w2 = {0} =1={0} < 2. Hence 2 is transitive.

Theorem 5: All natural numbers are transitive.

Proof: 0 is transitive since W0 = 0.

Suppose n is transitive.

Thenuncn. Nown®"=nu {n}so
unf=ununchcn.

Hence n* is transitive. By induction all natural numbers

are transitive. %©

Theorem 6 (P4): If m* =n" then m =n.

Proof: If m*=n*and m=nthenm e nand n € mand so
m € um < m, whence m € m, contradicting the Corollary
to Theorem 4. Hence m = n. %©

85.2. The Ordering of the Natural

Numbers

To construct a working model of the natural
numbers within set theory we need to define the
arithmetic operations. But before we do that we’ll define
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the ordering of the natural numbers. We define m <n to
simply mean that m € n. This is consistent with the
ordering we’ve grown up with. For example 2 <4 because
4={0,1, 2,3}and so 2 € 4. We must now show that this
ordering has the familiar properties.

Theorem 7 (Transitive Law):
Ifm<nandn<rthenm<r,

Proof: Supposem e nandn € r. Thenm € ur c r and
somer. %O

What is a little harder to show is that any two
natural numbers are comparable. That is, given any two
natural numbers m, n either m=norm <norm > n (by
which we mean that n < m). According to our definition
of ‘less than’ this means that given any two natural
numbers m, neitherm=normenorn e m,.

This property doesn’t hold for sets in general. For
example if S = {1, 2} and T = {2, 3} none of the
relationshipsS=T,S e Tand T € S hold.

We say that natural numbers m, n are comparable
ifmen, m=norn e m. Comparability is clearly an
equivalence relation.

Theorem 8: Any two natural numbers are comparable.
Proof: Let C(n) ={m N | m is comparable with n}.
C(0) = N: Just use induction on the set {n € N |n € C(0)}.
Clearly 0 € C(0).
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Suppose n € C(0). Thenn € Qorn=00r0 € n.
The first of these alternatives is a contradiction.
Each of the remaining two possibilities implies that
0 € n*son* € C(0).

If C(n) = N then C(n™) = N:

Suppose C(N) = N. We show by induction that for all
natural numbers m, m € C(n").

0 € C(n*) since n* € C(0). Suppose m € C(n").
Thenmen*or m=n* or n"em.

Caselmen™ Thenm=norm e n.

Case IAm=n: Thenm*"=n".

Case 1B m € n:

Since C(n) = N, m* is comparable with n.

Case 1B(i) n e m™:

Then n € m or n =m, both contradicting m < n.

Case 1B(i) n=m*or m" € n: Then m* € n*.
Case2m=n"orn*em: Thenn® e m".

Hence m* is comparable with n* and so C(n*) = N.
By induction C(n) = N for all natural numbers n. Z©

Theorem 9: m € nifand only if m < n.
Proof: Suppose m € n.

If X e mthen x e un < n. Hence m < n.
But m = n by the corollary to Theorem 4. Hence m — n.

Conversely suppose that m < n.
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By Theorem 6, m € norn € m (m =nis ruled out by the
fact that m is a proper subset). If n € m then n € n,

contradicting the corollary to Theorem 3. Hence m < n.
%O

Theorem 10: S™ is a set for all sets S.

Proof: I'll just give an outline of the proof. The details of
the two inductions are left as exercises.

(1) We prove by induction on n that there exists a function
Fn with domain n* such that for all m <n, Fn(m*) = Fn(m)*
and Fn(0) = S.

(2) We prove by induction on n that if m < n then for all
X <m, Fm(X) = Fn(X).

(3) Define the generalized relation F by xXFy <>y = Fn(X)
for some n.

(4) By (2) F is a generalized function.

(5) N is a set so, by the Axiom of Substitution, S™ = F[N]
isaset. Y©

85.3. The Arithmetic of the Natural

Numbers

It’s heavy going proving rigorously what seems so
obvious intuitively. We haven’t even got to the stage of
proving that 2 + 2 = 4. We now define addition of natural
numbers. If you think this is unnecessarily complicated,
ask yourself how you would go about defining addition,
without resorting to such vague notions of taking heaps of
things and combining them.

77



We shall define addition inductively. The next
theorem justifies this approach.

Theorem 11 (Definition by Induction): If X is a set and
a € X and F:X—Xis a function then there exists a unique
function u: N —X such that:
(1) u(0) = a;
(2) u(n*) = F(u(n)) forall n € N.

Proof: Let C={AcNx X |(0,a) e AA(n",F(X)) € A
whenever (n, X) € A}.
Sinceox X eC,C=0. LetU=nC.
Then U € C and so U is the smallest element of C.
We prove that U is a function.
LetS={n e N|(n,x) € Uand (n, y) implies that x = y}.
0 € S: If not then (0, b) € U for some b # a.
Then u —{(0, b)} € S, contradicting the fact that U is the
smallest element of C.
neS—>n'eS:Supposen e Sand n* ¢ S.
Since n e S there exists a unique x with (n, x) € U.
Hence (n*, F(x)) € U.
Since n* ¢ S there exists y such that (n*, y) € U for some
y = F(x).
Then U — {(n", y)} € U, contradicting the fact that U is
the smallest element of C.
Uniqueness follows from the fact that U is the smallest
element of C. % ©

We now define the basic arithmetic operations for
the natural numbers inductively.
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Addition
(A0) x+ 0 =x
(Al) x+y" = (x+y)

Multiplication
(MO)x0=0
(M1) xy" =xy + X

Exponentiation
(E0)x°=1
(E1) xv" = %V x

Theorem 12: 0 + x = x for all natural numbers x.
Proof: We prove this by induction on x.
0+ 0=0by (A0).
Suppose that 0 + x = x.
Then 0+ x" = (0 +x)" by (Al)
= x* by the induction hypothesis. %©

Theorem 13: x + y" =x" +y for all natural numbers x, y.
Proof: Inductionon'y.
x+0"=(x+0)" by (A1)
= X" by (A0)
=x"+ 0 by (AQ).
Suppose that x + y* = x* +.
Then x +y™ = (x + y")*" by (Al)
= (X" +y)" by the induction hypothesis
=x*+y" by (Al). ¥©
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Theorem 14: x +y =y + x for all natural numbers X, y.
Proof: Induction on .
x + 0 =0 by (A0)
=0 + x by Theorem 10.
Suppose that x +y =y + X.
Thenx+y*=(x+y)" by (Al)
= (y + X)* by the induction hypothesis
=y +x" by (Al)
=y* + x by Theorem 11. % ©

Theorem 15: If x +u=x+vthenu=v.

Proof: We prove this by induction on x.

Suppose x = 0. The result follows from Theorem 12,

Now suppose that it is true for x and suppose that
X*+u=x"+v,

Then x + u™ = x + v* by Theorem 13.

Hence u™ = v* by the induction hypothesis.

Finally, this implies that u = v by the Peano Axiom 4

(Theorem 6). Hence it’s true for x™ and so, by induction,

it is true for all x. ¥ ©

Theorem 16: If x <y then there is a unique z such that
X+z=Y.

Proof: The uniqueness was proved in Theorem 15.
We now prove the existence of z by induction on y.

If y =0then 0 + 0 =0 proves that it is true in this case.
Suppose it is true for y and suppose that x <y".
Thusxcy" =y u {y}.

Hencex=yorxcy.
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Case 1: x=y. Then take z = 1.

X+ 1=x"=y"and so it is true for y*.

Case 2: x c y. This is the same as x <y and by our
induction hypothesis there exists z such that x + z = y.
Thenx +z* = (x+2z)" =y*and so it is true for y*.

So, by induction it is true for all y. %©

We define the unique z as the difference between x
and y and denote it by y — x. We call the process
subtraction.

Theorem 17: For all natural numbers X, y, z the following
hold:
o(xt+y)tz=x+(y+2).
o X(y +2) =xy + xz
e0x=0
oYX =yX + X
® Xy = yX
o Ix =X
o (xy)" =Xy’
o XV X2 = xV+Z
o (W) = X"
elfx+y=0thenx=y=0
elfxy=0thenx=00ry=0
e x<yifandonly ify = x+ z for some z.
e (0 <X,
elfxz=yzandz=0thenx=y.
elfx<ythenx+z<y+zandxz<yz.
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elfx<yandy<zthenx<z.
elfx<yandy<xthenx=y.
Proof: The proofs are left as exercises. They are all
proved by induction, and the list is carefully ordered so
that results that are needed in any induction precede it in
the list.

There’s a lot more that can be proved about the
arithmetic of natural numbers, but it’s all pretty well plain
sailing now, so we’ll now turn our attention to extending
our number system to rational numbers, real numbers and
complex numbers.
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